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Abstract. A computer aided high temperature expansion of the magnetic susceptibility and the magnetic
specific heat is presented and demonstrated for frustrated and unfrustrated spin chains. The results are
analytic in nature since the calculations are performed in the integer domain. They are provided in the form
of polynomials allowing quick and easy fits. Various representations of the results are discussed. Combining
high temperature expansion coefficients and dispersion data yields very good agreement already in low
order of the expansion which makes this approach very promising for the application to other problems,
for instance in higher dimensions.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 75.40.Cx Static
properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.) – 75.10.Jm
Quantized spin models

1 Introduction

Spin systems are among the most investigated systems
in solid state physics. They represent problems with high
correlation since the spin algebra does not have the sim-
plicity of the fermionic or the bosonic algebra. This can
also be seen from the generic derivation of antiferromag-
netic spin models from a half-filled Hubbard model in the
limit of large interaction U →∞. Hence even the calcula-
tion of simple properties like the magnetic susceptibility
χ or the magnetic specific heat C is not straightforward.
Experimentally, however, susceptibility and specific heat
are the first quantities used to characterise a compound.
So quantitative theoretical predictions are very important
to pinpoint the appropriate model.

Quantum Monte Carlo methods underwent consider-
able progress in the last years so that the calculation of
χ and C for unfrustrated systems has become feasible to
very high accuracy. The treatment of frustrated spin sys-
tems, however, is still a difficult task since in the stan-
dard Ising basis the sign problem occurs. This leads to
the phenomenon that considerable cancellations and the
concomitant loss of statistical accuracy occur in the quan-
tum Monte Carlo computation, see e.g. reference [1]. In
the case of strong frustration one still has to resort to
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complete diagonalisation which restrict the accessible sys-
tem sizes very much, see e.g. reference [2]. For (quasi)
one-dimensional systems like chains or ladders finite
temperature density-matrix renormalisation provides a
reliable means to calculate susceptibilities and specific
heats, see e.g. references [3–6]. The caveat, however, re-
mains that the numerical methods require a new pro-
gramme run for each set of parameters. So fitting becomes
a tedious task as soon as more than one parameter is
involved.

The objective of the present article is to introduce a
computer aided expansion in the inverse temperature for
the quantities χ and C. This method is a variant of the
“linked cluster” approach [7, 8]. In the form implemented
here it provides the results as polynomials in the relevant
energy ratios. Thereby extremely fast and convenient fit
procedures become possible. Frustrating terms do not pose
more problems than any other additional couplings. For
the sake of simplicity we will demonstrate our approach
for one-dimensional systems, i.e. chains. The subsequent
choice of an appropriate representation of the results is
also very important. The inclusion of low temperature in-
formation enlarges the range of validity considerably.

In the next two sections the method is explained in
detail and contrasted to the conventional linked cluster
approach. In Section 4 the results are given and repre-
sented in various ways in order to obtain the best de-
scription. A particular representation based on additional
dispersion data is explained in Section 5. The findings are
summarised in the concluding Section 6.
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2 Methods

In the present work two methods are used to expand
the physical quantities. The first one is the linked
cluster method [7, 8] and the second one a method which
will be called moment algorithm henceforth. To be ex-
plicit, the spin- 1

2 Heisenberg chain

H =
N∑
i=1

(JSiSi+1 + αJSiSi+2 − hSzi ) (1)

with nearest and next nearest neighbour interaction is in-
vestigated with h representing the magnetic field in units
of gµB. The ratio of nearest and next nearest neighbour
exchange coupling is given by α.

The main idea of the linked cluster method is to re-
strict calculations to finite systems to obtain results in
the thermodynamic limit. The method can be applied to
systems (clusters) which are described by a sum of local
Hamiltonians like the Heisenberg Hamiltonian in (1). An
expansion of a quantity in powers of such a Hamiltonian
results in the computation of the contributions of clusters
of various sizes. To obtain the contribution of a finite clus-
ter to the quantity of the infinite system all contributions
of subclusters have to be subtracted with suitable multi-
plicity. Only connected (“linked”) clusters provide nonva-
nishing contributions. The non-connected clusters cancel
out due to the normalisation of the expectation value (see
for instance Eq. (2)). This is the main result of the linked
cluster theorem.

The numerical approach of the moment algorithm
makes use of the result of the linked cluster theorem. Here
as well the physical quantities are evaluated in the ther-
modynamic limit by means of finite systems. Let us con-
sider the Heisenberg Hamiltonian with nearest neighbour
interaction acting on a chain and let us expand a physical
quantity in powers of βJ = J/T , i.e. in powers of this
Hamiltonian. The largest connected cluster at a given or-
der n of the expansion contains (n + 1) sites. Hence all
clusters of this size must be embedded completely in the
finite system to obtain valid results in the thermodynamic
limit.

For concreteness, we compute the magnetic suscepti-
bility per site at vanishing magnetic field

χ(T ) =
β

N

tr(M2e−βH)
tr(e−βH)

· (2)

Denominator and numerator are computed separately by
expanding the corresponding exponential functions. The
resulting rational function is again expanded around β = 0
to obtain a polynomial in the inverse temperature β.

On this stage the comparison of the moment algorithm
to the linked cluster approach shows one advantage and
one disadvantage. The advantage is that it is not neces-
sary to determine and to classify all contributing clusters
explicitly. This task may not be underestimated in view
of the lack of efficient algorithms comparing graphs. This
point matters in particular for complicated lattices with

different types of bonds. In this respect, the moment al-
gorithm is simpler than the linked cluster approach. The
disadvantage is that the finite systems which have to be
dealt with are fairly large, in particular for elevated orders
in β and higher dimensions. In this respect, the linked
cluster approach is better suited for higher dimensional
problems.

The disadvantage mentioned is less troublesome if an
efficient way to compute traces of powers of the Hamil-
tonian is available. To this end we present an algorithm
which computes such traces in a very fast way. “Fast”
means that the necessary effort increases not exponen-
tially with system size N but only in powers of N . The
algorithm reduces the trace to an ordinary expectation
value in a higher-dimensional Hilbert space. To this pur-
pose the Hilbert space of the real system is doubled by
introducing to each real site |ir〉 a “doubled” site |id〉.
Any operator A defined on the real Hilbert space acts on
the tensor product of real and doubled Hilbert space in
the canonical way. That is A becomes A ⊗ 1 acting as the
identity on the doubled Hilbert space.

Furthermore, we consider a state which is the (unnor-
malised) product of singlets (or triplets with Sz = 0) be-
tween the real and the doubled sites

|S〉 =
N∏
i=1

(| ↑r↓d〉 − | ↓r↑d〉)
∣∣
i
. (3)

The key observation is that the trace in the original, real
Hilbert space is identical to the expectation value of |S〉
in the extended Hilbert space

tr(A)|real = 〈S|A⊗ 1|S〉 |double. (4)

To see the identity (4) one considers first a single site.
Explicit calculation shows

tr(A)|real = 〈↑ |A| ↑〉+ 〈↓ |A| ↓〉 (5a)
= 〈↑r↓d |A| ↑r↓d〉|d + 〈↓r↑d |A| ↓r↑d〉|d (5b)
= 〈S|A|S〉|d (5c)

where we used the subscripts r and d for “real” and “dou-
bled” (extended) Hilbert space, respectively. The validity
of (4) follows from (5a) directly for all operators A which
are products of local spin operators since the Hilbert space
of many spins is just the tensor product of the Hilbert
spaces of the individual spins

tr
∏
i

Ai|r =
∏
i

trAi|r (6a)

=
∏
i

〈(〈↑r↓d | − 〈↓r↑d |)Ai(| ↑r↓d〉 − | ↓r↑d〉)|i (6b)

= 〈S|
∏
i

Ai|S〉|d. (6c)

From the linearity of the expectation value and the trace
follows then that (4) holds also for all operators A since
they can be decomposed into sums of products of local
spin operators.
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On the left hand side of (4) for A = H2 for instance
one has to compute in the Ising basis (spins up or down)
2N contributions for L2 terms (N number of sites, L num-
ber of bonds), i.e. one has to sum about L22N terms. On
the right hand side of (4), however, one starts with a sin-
gle state which will be excited in L ways by the applica-
tion of H ⊗ 1 and requires to be de-excited in the same
way so that only L terms contribute in the end. Thus one
saves an exponential factor. An obvious by-product are the
relations

〈S|H2n|S〉 = 〈S|HnHn|S〉
= |Hn|S〉|2 (7a)

〈S|H2n+1|S〉 = 〈S|HnHn+1|S〉 (7b)

which imply that for a given order m in β one needs to
calculate only about m/2 applications of H to the sin-
glet product state |S〉. This statement remains true for
the numerator of susceptibilities as in (2) if the observ-
able (here: M =

∑N
i=1 S

z
i ) commutes with H. This is the

case for the uniform magnetisation M . Replacing |S〉 by
M |S〉 thus makes the relations (7) also applicable to the
numerator of (2).

We implemented the actual calculations on computer.
For not too high orders this can still be done with com-
puter algebra programmes. But to obtain the highest or-
ders it is necessary to write task-specific programmes. This
was done by using the language C++. Yet the dependen-
cies on all coupling constants are included on the symbolic
level, i.e. in polynomials of the coupling constants. So,
once obtained, the results are available to everybody and
they can be fitted to any experimental curve very quickly
and easily. The results for the moment algorithm (frus-
trated (order 10) and unfrustrated spin chain (order 16))
and for the linked cluster algorithm (unfrustrated spin
chain only, but order 24) are presented in the appendix.

Before concluding this section we like to note that the
trick to pass from a trace to an expectation value in a
higher dimensional Hilbert space is not restricted to spin-1

2
systems. By introducing for instance the generalised prod-
uct state of singlets |S〉g

|S〉g =
∏
j

2S∑
i=0

(−1)i√
2S + 1

|(S − i)r, (i− S)d〉
∣∣∣
j

(8)

the method can be applied to arbitrary spin. In (8) |jr, ld〉
stands for the state where the real spin has Sz = j and
the doubled spin Sz = l. For a derivation one simply has
to redo the calculation (5).

Henceforth the angular brackets will denote the ex-
pectation value with regard to |S〉 or the original trace,
respectively, since their identity is established and so no
further distinction necessary.

The calculations in the present work were done to the
highest order possible on the available work stations. For
the unfrustrated chain the physical quantities were ex-
panded to order N on a finite system of size N sites.
Therefore clusters in the Nth order are overcounted or

missed. But it is possible to correct these effects in high-
est order by an analytical argument which is presented in
the subsequent section.

3 Finite size corrections

The wrap-around effects of the numerator and denomina-
tor of equation (2) are investigated separately for a chain
of length N with periodic boundary conditions.

The denominator has the following kind of contribu-
tions in the Nth order

〈HN 〉 = 〈
N∏
i=1

(SiSi+1)〉+ . . . (9)

which are not realised in the thermodynamic system. Fix-
ing the component of one of the spin vectors involved to for
instance Sx one sees that a non-vanishing contribution oc-
curs only if all spin components are Sx. The overall value
of the right hand side in (9) is 4−N . Since all permutations
of the scalar products will occur as well if the left hand
side of (9) is expanded and since all these permutations
yield the same contribution the factor N ! has to be added.
Since the choice of the spin component was arbitrary an
additional factor 3 concludes the argument. Thus one has
to subtract 3N !4−N to yield the thermodynamic result in
the denominator.

The corrections of the numerator of equation (2) are
more complicated. They consist of three contributions.
The first is similar to the one in the denominator

〈(Sz1 )2HN 〉 = 〈(Sz1 )2
N∏
i=1

(SiSi+1〉+ . . . (10)

and overcounts the numerator by 3N !4−N−1. On the other
hand, the thermodynamic contribution is neglected in this
order of expansion

〈Sz1SzN+1(S1S2)(S2S3) . . . (SNSN+1)〉 (11)

which represents the second correction. It takes the value
2N !4−N−1. The factor N !4−N−1 arises for the same rea-
sons as before. There is no factor 3 since the spin compo-
nent is already fixed by the choice of the magnetisation
direction. The geometric factor 2 arises instead because
the sites 2 to N + 1 can be found to the right or to the
left of the starting site 1.

The third and last correction consists of clusters with
triple occurrence of two sites. It is based on the identity
for S = 1/2

SxSySz = i/8 (12)

which holds also for all cyclic permutations of the spin
components. For anticyclic permutations the left hand side
of (12) acquires a minus sign.

A wrap-around with sites occurring three times is pos-
sible as soon as the magnetisation operators are taken to
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be at different sites: Sz1S
z
j with j 6= 1. Then each of the

sites 1 and j appears three times

〈Sz1Szj
N∏
i=1

(SiSi+1〉. (13)

Note that all permutations of the sequence of the scalar
products appear. Hence in most cases the contributions
cancel each other since cyclic and anticyclic permutations
of the spin components at site 1 or site j occur indepen-
dently and with equal amplitude. Only if the site j is ad-
jacent to 1, i.e. j = 2 or j = N (periodic boundary con-
ditions), the cyclic and anticyclic permutations at site 1
and j are correlated and a finite total effect remains. The
relevant factors are (for j = 2)

〈Sz1Sz2 (SNS1)(S1S2)(S2S3) . . . 〉. (14)

Among the 3! = 6 ways to arrange the three scalar
products in (14) the two where (S1S2) is in the mid-
dle yield 1/82(SxNS

x
3 + SyNS

y
3 ) while the other four yield

−1/82(SxNS
x
3 + SyNS

y
3 ) so that −2/82(SxNS

x
3 + SyNS

y
3 ) re-

mains. Accounting for the multiplicity due to the arrange-
ment of the other scalar products yields the combinato-
rial factor N !/3!. A factor 2 comes from the possibility to
choose j = 2 or j = N . The overall third correction finally
reads −8× 4−(N+1)N !/3!

In summary, the total corrections to the results com-
puted in the Nth order for a finite system of N sites with
periodic boundary conditions for the numerator Nu and
for the denominator De are

Nucorrected = Nucomputed +N !
1
3

(
1
4

)N+1

(15a)

Decorrected = Decomputed −N ! 3
(

1
4

)N
. (15b)

After these considerations it is also straightforward to
correct the wrap-around effects for the Heisenberg chain
with next-nearest neighbour interaction. In the Nth order
on a finite system of 2N sites these effects occur only in
the Nth order in α and in β. In this order the system
corresponds to a system of two independent chains with
nearest neighbour interactions only, so that the correc-
tions (15) apply to terms ofNth order in α. This concludes
the discussion of the finite size corrections.

4 Results and representations

In the Appendix the series coefficients are presented for
the magnetic susceptibility χ and for the magnetic specific
heat C per site. The specific heat is derived from the de-
nominator of equation (2) which is the partition function
of the system by

C(T ) =
1
N

∂

∂T

〈He−βH〉
〈e−βH〉 (16a)

=
1
N

∂

∂T

(
− ∂
∂β 〈e−βH〉
〈e−βH〉

)
. (16b)

It is worth mentioning that due to the derivation in (16b)
one order in β is lost. It is re-gained, however, by the
subsequent derivation with respect to T .

In particular, results for the unfrustrated chain are
listed in Appendix A.3. These are obtained by the linked
cluster method and comprise orders as high as 24. Such
high orders are obtained by an exact extrapolation of
smaller clusters as explained below. They are in agree-
ment with expansion results previously obtained [9, 10].
In Appendix A.3.1 the magnetic susceptibility coefficients
are given, in Appendix A.3.2 the specific heat coefficients
are given.

For the loop-free chain the calculation of high temper-
ature series for spin models simplifies decisively compared
to higher dimensions due to the simple structure of the
contributing cluster. A finite open chain with n bonds will
contribute to the specific heat only in order β2n. This is
so because otherwise there will always be one site occur-
ring an odd number of times in the spin products leading
eventually to a vanishing trace.

The susceptibility series shows a systematic pattern
which can be exploited to obtain longer series. For the
S = 1/2 Heisenberg chain, the nonvanishing contribution
of order βn of a finite open cluster with n bonds and n+1
sites will be due to one spin product of the Hamiltonian
acting on each bond and two magnetisation operators Sz
at the ends of the chain. Its contribution is of the form
a0n! 4−n−1βn, where a0 is independent of the cluster size
(as before we consider the terms without the 1/n! factors
from the exponential series).

Similarly, the contribution in order βn+1 will be of
the form (b0 + nb1)n! 4−n−2βn+1. Again b0 and b1 do not
depend on the length of the finite cluster. The term pro-
portional to n is due to the n possibilities to attach one
more term of the Hamiltonian to any of the n bonds.

In the same way, the general form of the higher order
contributions can be determined with more and more coef-
ficients. With sufficiently large clusters the coefficients a0,
(b0, b1), (c0, c1, c2), . . . can be obtained by solving a sys-
tem of linear equations. Using clusters with up to 18 bonds
allowed to extend the susceptibility series to order 24.

The moment algorithm allowed us to compute results
for the unfrustrated chain up to order 16 for the suscepti-
bility (A.1.1) and for the specific heat (A.2.2). Note that
this is only two orders less than the maximum cluster
which is actually computed in the linked cluster approach.
The results are in complete agreement with the linked
cluster results. The only difference is in the internal rep-
resentation where doubles are used in the linked cluster
programme and true fractions in the moment algorithm.
The susceptibility as well as the specific heat of the frus-
trated chain is expanded up to order 10 (A.2.1 and A.2.2).

Having obtained the series for the various expansions
we pass now to the discussion of suitable representations.
The choice of an appropriate representation allows to gain
the maximum of information from the bare series coef-
ficients. We follow two main routes. One is the use of
Padé approximants and continued fractions, respectively;
the other is to incorporate additional information at low
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Fig. 1. Comparison of various depths of continued fraction rep-
resentations of the susceptibility χ for the unfrustrated chain.

temperatures to improve the representations in the low
temperature regime.

Exact results from Bethe ansatz calculations for the
unfrustrated chain [11, 12] and numerical results from
density-matrix renormalisation group (DMRG) calcula-
tions for the frustrated chain [13] are used as benchmarks.

4.1 Unfrustrated chain

Since the convergence of the plain series in β can be hin-
dered by any pole the use of a Padé approximant describ-
ing the quantity under study by a rational function is more
stable than the plain series.

The polynomial in β of the physical quantity under
consideration is represented as a continued fraction, say
with depth 2N ,

χ[2N ](β) =
β

c1 +
β

c2 +
.. .

· · ·+ β

c2N

(17)

which is equivalent to the [N,N ] Padé approximant. An
odd depth of 2N+1 is equivalent to the [N + 1, N ] Padé
approximant. Increasing the degree of either the numera-
tor or the denominator polynomial at the expense of the
other does not improve the results. The advantage of the
continued fraction representation is that the coefficients
ci remain constant on increasing depth. For instance c1 is
equal to 4 and c2 is equal to 1/2 due to the Curie and due
to the Curie-Weiss law, respectively.

In Figure 1 various depths of continued fraction rep-
resentations of the unfrustrated susceptibility are shown.
The comparison with the exact result shows that the
agreement improves on increasing depth as expected. But

the improvement of the representations is relatively small
for higher depths. Excellent agreement can be achieved
down to T ≈ J/4 if coefficients up to order 24 are used.

In order to extend the region of satisfying agreement
to lower temperatures information about the low temper-
ature regime can be incorporated. To this end, the con-
tinued fraction depth is incremented by adding a new
constant. This constant is not determined from the high
temperature expansion. But it is determined such that the
desired additional property is fulfilled.

To be precise, we include the value of the susceptibility
at zero temperature. For the unfrustrated chain it can be
expressed as [11, 14]

χ(0) =
1

2π
1
vS

(18)

with the spin wave velocity vS = π
2 [15]. Equation (18)

implies that the central charge c is one. Assuming that
the central charge does not vary on switching on the frus-
tration we will use (18) there, too. For the change of the
spin wave velocity is accounted by [16] by

vS =
π

2
(1− 1.12α) for 0 ≤ α < αc. (19)

In the gapped regime for α ≥ αc ≈ 0.241167 [17] the
susceptibility vanishes exponentially at T = 0.

The relevant gap, however, is not the spectroscopic gap
∆01 between the S = 0 ground state and S = 1 excited
states but half of this value ∆01/2. This is so since the
elementary excitations of strongly frustrated spin chains
are asymptotically free massive S = 1/2 spinons, see for
instance references [18–20].

The low temperature behaviour of the specific heat [11]
is given by

C(T ≈ 0) =
π

3
1
vS
T (20)

with the same spin wave velocities vS as in the previous
equations for α < αc. In the gapped regime for supercrit-
ical frustration, an exponential vanishing for low temper-
atures is to be expected. From (20) follows directly

d
dT

C(T = 0) =
π

3
1
vS

(21)

which can also be incorporated in the representations. A
third piece information is obtained by

s(∞)− s(0) =
∫ ∞

0

C(T )
T

dT = ln 2. (22)

This piece of information, however, is more difficult to
build-in since it involves an integration over the contin-
ued fraction. Moreover, it turns out that its effect is not
sizable. Thus it is not considered any further.

Figure 2 shows the various representations for the
susceptibility χ of the unfrustrated chain. The approxi-
mate results agree very well with the exact ones down to
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Fig. 2. Various representations of the susceptibility χ for the
unfrustrated chain. The plain series is expanded up to order
24. The inset shows a zoom of the [12,11]-Padé approximant
and of the [12,12]-Padé approximant with T = 0 information,
see equation (18).
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Re β
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[8,8] Pade, smallest modulus: 1.94
[10,10] Pade, smallest modulus: 1.92
[12,12] Pade, smallest modulus: 1.91

Fig. 3. Singularities of various Padé representations in β for χ
and the smallest moduli of their β values. Singularities in the
left half-plane are not shown.

T/J ≈ 0.2 for the Padé approximant with T = 0 informa-
tion. Without the aid of the exact result one is also able to
determine the quality of the representation by comparison
of results in highest order with those in lower orders.

It is instructive to look at the poles of the Padé rep-
resentations closest to the origin. Their modulus is an es-
timate for the radius of convergence of the plain series.
From the values given in Figure 3 one can deduce that
this value is fairly constant at about βmax ≈ 1.9. This
implies that the plain series will always diverge below
about T ≈ 0.53 irrespectively of the order of the series, cf.
Figures 1, 2. This is a good illustration of the utility of
Padé representations. They are not blocked by the occur-
rence of poles. So they are able to represent more compli-
cated functional dependencies.
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exact result

0.0 0.1 0.2
T/J

0.00
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0.20

0.30

c

Fig. 4. Various representations of the specific heat C for the
unfrustrated chain. The plain series is expanded up to order
24. The inset shows a zoom of the [11,11]-Padé approximant
and of the [12,12]-Padé approximant with T = 0 information,
see equations (20) and (21).

The low temperature behaviour of the specific heat is
less complex than the one of the susceptibility. Figure 4
shows a better agreement with the exact result, especially
in the low temperature regime. Here the plain series is
expanded up to order 24 in β. With the two pieces of
low temperature information (20, 21) the representation
agrees very well with the exact result down to T/J ≈ 0.1.

At this stage a consideration of the range of validity
that one could expect is in order. In fact, we argue that
one should have expected an even better description based
on 1/T results.

Calculating up to order n means that the physics on
a length scale n (lattice constant set to unity) is taken
into account since this is the size of the maximum cluster
treated properly. So one is led to the estimate

n ≈ vS

2πTmin
(23)

where the energy scale 2πTmin results from the discretisa-
tion of the Matsubara frequencies which serves here as in-
frared cutoff. From (23) follows for the unfrustrated chain
Tmin ≈ 1/(4n) for the temperature down to which the
large T information should be capable to describe the
physics properly. It is obvious that the validity stops ac-
tually at much higher temperatures. For this reason we
presume that the representation by a Padé approximant
is not yet the optimum.

4.2 Frustrated chain

Motivated by the inorganic spin-Peierls system
CuGeO3 [21, 22] the results for the frustrated chain
are presented with a fixed α-value of 0.35 [23–25]. This
value is chosen since it allows a good description of the
susceptibility data. At low temperatures there is evidence
that the frustration is lower [26].
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Fig. 5. Various representations of the susceptibility χ for the
frustrated chain with α = 0.35. The plain series is expanded up
to order 10. The inset shows a zoom of the [5,4]-Padé approxi-
mant and of the [5,5]-Padé approximant with T =0 information
for the gapped regime.

Comparisons to benchmark calculations were also per-
formed at the critical frustration αc. Compared to the
higher orders reached in the unfrustrated case, the re-
sults for the frustrated chain should agree well only for
higher values of T/J . We will see, however, that this is
not the case.

Figure 5 shows the susceptibility compared to DMRG
calculations. The best representation with T = 0 informa-
tion is in very good agreement down to T/J ≈ 0.25.

Since the frustration is supercritical 0.35 > αc the
T = 0 information consists in fixing χ(T = 0) = 0 due to
the exponential vanishing. The region of satisfying agree-
ment coincides very well with the one of the representation
of the specific heat C with T = 0 information in Figure 6.
For the specific heat in the supercritical regime the deriva-
tive dC/dT is set to zero, too.

Obviously, frustration is favourable for the range of
applicability of the 1/T expansion. Without frustration
we had to include much higher orders to achieve sim-
ilar agreement down to T/J ≈ 0.25. Figures 5 and 6
depict data for a specific value of frustration. But the
raw data as given in Appendix A.2 allow the calcula-
tion of susceptibilities and specific heats for any value of
frustration.

Three possible sources for the improvement of the 1/T
description by frustration are conceivable. One is the ap-
pearance of a gap due to frustration. But for α = αc

we found qualitatively the same behaviour so that this
explanation can be excluded. A second idea concerns
the dominance of logarithmic corrections. Since our an-
sätze are not fit to represent these corrections the agree-
ment must deteriorate once logarithmic corrections be-
come important on lowering the temperature. If this mech-
anism were the dominant one should expect a significantly
improved agreement at the critical frustration. The ac-

0.0 1.0 2.0 3.0 4.0 5.0
T/J

0.0

0.1

0.2

0.3

0.4

C

plain series
Pade representation
T=0 information
DMRG result

0.0 0.1 0.2 0.3 0.4
T/J

0.0

0.1

0.2

0.3

c

Fig. 6. Various representations of the specific heat C for a frus-
trated chain with α = 0.35. The plain series is expanded up to
order 10. The inset shows a zoom of the [4,4]-Padé approximant
and of the [5,5]-Padé approximant with T =0 information, see
equations (20) and (21).

tual comparison (not shown), however, does not display
a significantly improved agreement. So the logarithmic
corrections seem to be not the main problem of a correct
representation [27].

The third possible explanation is a reduction of the
spin wave velocity or, put differently, of the whole dis-
persion. Analytically, it is known in leading order of an
expansion around the dimer limit that frustration low-
ers the mobility of the excitation [28]. Numerical results
show the same, (see Eq. (19)). Indeed, the positions of
the maxima and the lower bound of the range of valid-
ity scale roughly like the spin wave velocity as given by
equation (19). Hence, our results indicate that the esti-
mate (23) is valid to the extent that it establishes a pro-
portionality Tmin ∝ vS/n.

Summarising this section we state that the Padé rep-
resentations with low temperature information incorpo-
rated show very good agreement down to rather low val-
ues of T/J . In particular the maxima of the physical
quantities susceptibility and specific heat are sufficiently
well-described. With the full dependence of the model pa-
rameter one has a powerful tool to fit the parameters to
experimental data in a very fast and convenient way.

5 Representation with dispersion data

In this section a different kind of representation is illus-
trated. It is also based on the idea to incorporate low
temperature information in a high temperature expansion.
As in the previous section, the approach is motivated by
approximations for the susceptibility of a dimerised and
frustrated S = 1

2 chain in references [29, 30]. There the
authors approximate the magnetic susceptibility by using
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an exclusion statistics appropriate for excited triplets in
the dimer model. To first approximation these excitations
are often treated as free bosons. Yet it is obvious that
they are hard-core bosons since there cannot be more than
one on each dimer. This basic fact was included in refer-
ence [29]. In reference [30] the interaction beyond the hard-
core exclusion was incorporated on a mean-field level.

Defining the partition function

z(β) =
1

2π

∫ π

−π
dk e−βω(k), (24)

for a single excitation one obtains the hard-core

χ0 = β
z(β)

1 + 3z(β)
(25)

for the hard-core exclusion statistics. On the mean-field
level one obtains

χ =
χ0

1 + Jeffχ0
(26)

where Jeff can be determined either in the limit of strong
dimerisation or in such a way that the Curie-Weiss con-
stant is correct. Both methods do not differ much [30].
The approach (26) is very successful in describing triplets
with small dispersion [31] as in SrCu2(BO3)2 [32].

Formulae (25, 26) suggest to represent Tχ essentially
as function of z(β). In the lowest order the representation
should reproduce equation (25). Furthermore, it should
allow to incorporate the information of the high tempera-
ture expansion in a natural way and the ansatz should be
as simple as possible. Our choice is

Tχ =
c0z(β)

1 +
c1v(β)

1 +
c2v(β)

1 + c3v(β) · · ·

(27)

with

v(β) = 1− z(β). (28)

The variable v(β) is chosen such that v(β) ∝ β for
β → 0 so that the coefficients in (27) can be determined
straightforwardly from the high temperature expansion.
Of course, the choice (27) is just one of many possible
choices so that a certain degree of arbitrariness remains.
We tried also other choices, for instance an ansatz extend-
ing (26) where χ0 is taken as variable instead of v. Our
observation is that the particular choice does not matter
much so that we present here the easiest ansatz we could
think of.

The low temperature information incorporated in (27)
is in the dispersion relation ω(k). In order to demonstrate
the approach we apply it to the unfrustrated chain where
we can rely on exact results for the dispersion [15]

ω(k) =
π

2
sin(k). (29)

0.0 0.2 0.4 0.6
T/J

0.09

0.10

0.11

0.12

0.13

0.14

0.15

χ

depth 6
depth 8
depth 10
depth 12
exact resultexact

Fig. 7. Various orders of continued fraction representations
of equation (27) for the magnetic susceptibility of a Heisen-
berg chain in comparison to the exact result obtained by Bethe
ansatz. The arrow indicates the exact result at T = 0.

We are aware that the unfrustrated case is not partic-
ularly suited for the approach (27) as motivated above.
The elementary excitations are S = 1/2 spinons [33], not
magnons. In this respect, we are choosing a difficult test
case for which we will show that the approach works very
well. On the other hand, it is known that the main weight
of the dynamic structure factor [14,34] is located close to
the lower boundary given by (29) so that the use of (29)
as “magnon dispersion” is justifiable.

Evaluation of the integral (24) yields

z(β) = I0

(
1
2
βπ

)
− L0

(
1
2
βπ

)
(30)

with the modified Bessel function of the first kind Iν
and the modified Struve function Lν as defined in
reference [35].

By construction, the ansatz (27) is able to fulfill the
high temperature limit β → 0 where Tχ → 1/4. It does
so if c0 is set to 1/4. It is a very favourable feature that
the opposite limit of vanishing temperature β →∞ where
Tχ→ T/π2 [36, 37] can also be reproduced. Using

z(β) = 2/π
∫ π/2

0

e−βπ/2 sin(k)dk (31a)

=
β→∞

2/π
∫ ∞

0

e−βπ/2kdk = 4/(βπ2) (31b)

one easily sees that the correct T → 0 limit is obtained if

1 = 4c0/(1 + c1/(1 + c2/(1 + c3/ · · · ))) (32)

holds.
Figure 7 shows various continued fraction representa-

tions of the magnetic susceptibility of a Heisenberg chain.
Already low orders of the representation show good agree-
ment with the exact result down to low T/J . Even the
sixth order representation describes position and height of
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Fig. 8. Various orders of continued fraction representations
of equation (33) for the specific heat of a Heisenberg chain in
comparison to the exact result obtained by Bethe ansatz.

the maximum fairly well. For order 8 and above, the max-
imum is perfectly described. Even the value of the zero
temperature susceptibility is very close to its exact value
which could not be expected since the validity of (32) is
not built-in.

The 12th order representation fits very well down to
T/J ≈ 0.3, which is almost the result of the [12, 12]-Padé
approximant in Figure 2 obtained from a much costlier
series up to order 24. Orders above 12 are difficult to im-
plement with the dispersion information since the determi-
nation of the constants ci becomes very tedious. Parallely,
the improvement obtained becomes smaller and smaller.

Looking at Figure 7 closely it can be concluded that
only the logarithmic terms in the susceptibility [12, 38]
spoil the agreement at low temperatures T/J < 0.3.
If these terms are explicitly incorporated the agreement
in the whole temperature range can be conveniently de-
scribed [6].

It is, however, not our aim to provide a fit to a result
which is known analytical. For this reason we do not fol-
low the route to incorporate the logarithmic terms into
the ansatz (27). By the results depicted in Figure 7 we
have demonstrated that the inclusion of T = 0 informa-
tion in an ansatz of high temperature expansion improves
the range of validity considerably. In particular, already
a small number of high temperature coefficients allows a
satisfyingly accurate description of the overall form of the
physical quantity under study. To corroborate this conclu-
sion we present in Figure 8 the analogous result for the
specific heat. It is based on the ansatz

C =
3
2
β2 d0

(
z′′ − 3(z′)2/(1 + 3z)

)
1 +

d1v(β)

1 +
d2v(β)

1 + d3v(β) · · ·

(33)

where z′ and z′′ stand for the first and the second deriva-
tive of z with respect to β, respectively. The ansatz (33)
is motivated by the result

C =
3
2
β2

(
z′′ − 3(z′)2/(1 + 3z)

)
1 + 3z

(34)

derived from the free energy including exclusion statis-
tics [29]. As for the susceptibility the agreement between
approximate ansatz and exact results is good even for low
depths of the continued fraction (33). Note, however, the
spurious pole at about T = 0.3J occurring in the represen-
tation of depth 6. This phenomenon cannot be excluded in
Padé representations so that one should always consider
various depths in order to judge which features are mean-
ingful. The 12th order result agrees excellently with the
exact result which shows the efficiency of the ansatz (33).

Against the ansätze (27, 33) one may object that the
dispersion ω(k) will not be available in general. Of course,
exact results for the dispersion are as rare as exact re-
sults for susceptibilities or specific heats. But there are
a number of good approximate methods which provide
ω(k) at zero temperature, for instance perturbative ex-
pansions [39]. Their results can be taken to refine and to
supplement the high temperature expansions. Or it can
be reasonable to use the experimentally determined re-
sults for ω(k) in order to understand the thermodynamic
quantities.

The fact that already low orders of a high temperature
expansion can be sufficient to provide good estimates for
χ(T ) and C(T ) is especially important for higher dimen-
sional models in d = 2 or d = 3. In these cases higher
orders cannot be obtained due to the quickly rising num-
ber of sites or number of clusters to be considered.

6 Summary

The main objective of the present paper is to illustrate a
general way to obtain very fast and convenient analytical
formulae for standard thermodynamical quantities such
as the magnetic susceptibility and the specific heat. So
the results should be viewed mainly as effective tools for
quick data analysis. The route to such formulae comprises
two steps. The first one is a high temperature expansion
in β performed symbolically on computers providing the
coefficients in analytic form. The second one is the use
of an optimised representation of the results. In this sec-
ond step the inclusion of additional information at zero
temperature available from other sources is particularly
useful. It is not our objective to compute by the methods
presented unknown low temperature physics.

For the sake of illustration we considered in the present
article frustrated Heisenberg chains, i.e. chains of S =
1/2 spins with nearest and next-nearest neighbour cou-
plings J and αJ , respectively. For these chains we pro-
vided the high temperature coefficients for the magnetic
susceptibility and the specific heat up to order 10 in the
frustrated case and up to order 24 in the unfrustrated case.
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For topologically simple lattices the linked cluster ap-
proach is the most efficient since it avoids to compute
powers of the Hamiltonian on unnecessarily large systems.
The actual expansion is done for subsystems, the so-called
clusters. The price to pay is the necessary sophisticated
bookkeeping of the clusters.

In order to be able to treat straightforwardly also more
complicated lattices (or more complicated topologies of
couplings such as frustrating couplings) we abandoned the
calculation on subsystems in the moment algorithm. In or-
der not to be overwhelmed by the quickly rising dimension
of the Hilbert space we identified the original trace with
an expectation value on an extended Hilbert space. This
trick reduces the number of terms in the application of
the Hamiltonian from L2N to L where L is the number
of bonds and N the number of sites. In the moment algo-
rithm the inclusion of frustration is not more complicated
than the inclusion of any other additional coupling. This
is in contrast to quantum Monte Carlo approaches where
frustration leads generically to the severe sign problem.

For not too low temperatures a very good agreement
could be achieved. Including further information on the
low temperature the agreement can be improved further.
In particular, the use of information on the zero temper-
ature dispersion turned out to be very efficient. In this
way, even relatively low orders allow a good description
of the thermodynamic quantities under study. The neces-
sary dispersion information can be taken from exact or ap-
proximate results. Taking experimental dispersion results
allows to check the consistency of the model assumed.

Due to the possibility to reach satisfactory results al-
ready in low orders of the high temperature expansion
the application to higher dimensional cases such as the
strongly frustrated Shastry-Sutherland model [40, 41] is
possible and will be reported elsewhere. Work on gapped
systems such as dimerised chains is in progress.

We acknowledge many useful discussions with E. Müller-
Hartmann and H. Monien. We are indebted to A. Klümper
for the Bethe ansatz data and to R. Raupach and F. Schönfeld
for the DMRG results which we used as benchmarks. Equally,
helpful remarks by A. Honecker are acknowledged. This work
was supported by the Deutsche Forschungsgemeinschaft in the
SFB 341 and in the Schwerpunkt 1073. The computations were
mainly done on machines of the Regional Computing Center
of the University of Cologne.

Appendix A: Coefficients

A.1 Unfrustrated chain, moment algorithm

Here the results for the unfrustrated chain are presented.
The susceptibility and the specific heat have been com-
puted up to order 16.

A.1.1 Susceptibility

n an n an

0 1
4 9 3 737

74 317 824

1 − 1
8 10 − 339 691

5 945 425 920

2 0 11 − 1 428 209
54 499 737 600

3 1
96 12 18 710 029

2 242 274 918 400

4 5
1 536 13 7 045 849

809 710 387 200

5 − 7
5 120 14 − 358 847

3 957 275 492 352

6 − 133
122880 15 − 65 174 099 663

28 566 582 460 416 000

7 1
16 128 16 − 258 645 079 463

498 616 712 036 352 000

8 1 269
4 587 520

Series coefficients an for the high temperature expansion
of the magnetic susceptibility χ = 1

T

∑
n an(βJ)n.

A.1.2 Specific heat

n an n an

0 0 9 − 4 303
688 128

1 0 10 − 334 433
110 100 480

2 3
16 11 37 543

31 457 280

3 3
32 12 3 987 607

3 170 893 824

4 − 15
256 13 − 1 925 339

41 523 609 600

5 − 15
256 14 − 369 233 453

930 128 855 040

6 21
4 096 15 − 31 504 270 817

362 750 253 465 600

7 917
40 960 16 851 758 334 701

8 706 006 083 174 400

8 1 417
327 680

Series coefficients an for the high temperature expansion
of the magnetic specific heat C =

∑
n an(βJ)n.

A.2 Frustrated chain, moment algorithm

The coefficients for the results of frustrated chain are pre-
sented. The magnetic susceptibility and the magnetic spe-
cific heat are expanded up to order 10 in βJ .
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A.2.1 Susceptibility

(n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k

(0,0) 1
4 (4,1) − 23

768 (6,1) 9
1 280 (7,5) 943

368 640 (8,8) 1 269
4 587 520 (10,0) − 339 691

5 945 425 920

(1,0) − 1
8 (4,2) 1

512 (6,2) 221
61 440 (7,6) 67

368 640 (9,0) 3 737
74 317 824 (10,1) − 22 843

1 486 356 480

(1,1) − 1
8

(4,3) − 1
96

(6,3) − 163
92 160

(7,7) 1
16 128

(9,1) − 34 337
23 592 960

(10,2) 15 205 963
5 945 425 920

(2,0) 0 (4,4) 5
1 536 (6,4) 7

15 360 (8,0) 1 269
4 587 520 (9,2) 14 125

4 128 768 (10,3) − 311 903
82 575 360

(2,1) 1
8 (5,0) − 7

5 120 (6,5) 23
7 680 (8,1) − 23 629

20 643 840 (9,3) − 1 249
35 389 440 (10,4) 9 659

3 932 160

(2,2) 0 (5,1) − 49
6 144 (6,6) − 133

122 880 (8,2) − 58 651
13 762 560 (9,4) 317

229 376 (10,5) − 1 177 787
825 753 600

(3,0) 1
96

(5,2) 37
1 536

(7,0) 1
16 128

(8,3) 28 751
5 160 960

(9,5) − 969
655 360

(10,6) 599 639
594 542 592

(3,1) 1
128 (5,3) − 1

128 (7,1) 5 863
1 474 560 (8,4) − 59

20 160 (9,6) 93 463
61 931 520 (10,7) 791 221

1 486 356 480

(3,2) − 1
32 (5,4) 1

512 (7,2) − 805
73 728 (8,5) − 877

1 290 240 (9,7) − 67 097
82 575 360 (10,8) − 367 481

1 486 356 480

(3,3) 1
96 (5,5) − 7

5 120 (7,3) 3 023
737 280 (8,6) 5 389

20 643 840 (9,8) − 361
1 720 320 (10,9) 22 433

148 635 648

(4,0) 5
1 536

(6,0) − 133
122 880

(7,4) − 381
81 920

(8,7) − 1 271
1 720 320

(9,9) 3 737
74 317 824

(10,10) − 339 691
5 945 425 920

Series coefficients an,k for the high temperature expansion of the magnetic susceptibility of the frustrated chain
χ = 1

T

P
n,k an,kα

k(βJ)n.

A.2.2 Specific heat

(n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k (n, k) an,k

(0,0) 0 (4,1) − 3
32

(6,1) 63
512

(7,5) − 245
8 192

(8,8) 1 417
327 680

(10,0) − 334 433
110 100 480

(1,0) 0 (4,2) − 3
32 (6,2) − 363

4 096 (7,6) 0 (9,0) − 4303
688 128 (10,1) 92629

2 752 512

(1,1) 0 (4,3) 0 (6,3) 17
512 (7,7) 917

40 960 (9,1) 2 613
573 440 (10,2) − 420475

11 010 048

(2,0) 3
16 (4,4) − 15

256 (6,4) 105
1 024 (8,0) 1417

327 680 (9,2) 3 855
57 344 (10,3) 59 305

2 752 512

(2,1) 0 (5,0) − 15
256

(6,5) 0 (8,1) − 4 793
61 440

(9,3) 1
10 240

(10,4) − 138 811
2 752 512

(2,2) 3
16 (5,1) 25

128 (6,6) 21
4 096 (8,2) 2 323

24 576 (9,4) − 261
286 720 (10,5) 51 701

1 376 256

(3,0) 3
32 (5,2) − 5

128 (7,0) 917
40 960 (8,3) − 59

960 (9,5) 5 901
81 920 (10,6) 27 641

2 752 512

(3,1) − 9
32

(5,3) 15
128

(7,1) − 2 611
40 960

(8,4) 35
2 048

(9,6) − 2 411
143 360

(10,7) − 1 817
917 504

(3,2) 0 (5,4) 0 (7,2) − 119
4 096

(8,5) − 407
61 440

(9,7) − 2 229
573 440

(10,8) 38993
1 572 864

(3,3) 3
32 (5,5) − 15

256 (7,3) − 413
4 096 (8,6) − 2 449

40 960 (9,8) 0 (10,9) 0

(4,0) − 15
256 (6,0) 21

4 096 (7,4) 651
20 480 (8,7) 0 (9,9) − 4 303

688 128 (10,10) − 334 433
110 100 480

Series coefficients an,k for the high temperature expansion of the magnetic specific heat of the frustrated chain
C =
P

n,k an,kα
k(βJ)n.

A.3 Unfrustrated chain, linked cluster expansion

A.3.1 Susceptibility

n an n an n an n an n an
0 1.0 5 −4 032.0 10 −9 565 698 560.0 15 −205 019 990 184 689 664.0 20 −18 366 266 410 738 921 187 573 760.0

1 -4.0 6 −89 376.0 11 −210 597 986 304.0 16 −3 169 755 454 477 500 416.0 21 −40 780 317 289 246 872 850 923 520.0

2 0.0 7 163 840.0 12 3 486 950 684 672.0 17 208 763 541 109 969 256 448.0 22 38 668 138 493 195 891 009 425 244 160.0

3 64.0 8 26 313 984.0 13 203 634 731 188 224.0 18 8 342 101 010 835 559 022 592.0 23 983 734 184 997 038 611 238 624 428 032.0

4 400.0 9 191 334 400.0 14 -127 324 657 152 000.0 19 −175 912 858 271 144 581 529 600.0 24 −75 650 797 544 886 562 610 211 717 119 286.7

Series coefficients for the linked cluster expansion of the magnetic susceptibility for the Heisenberg chain with
χ = 1

4T

P
n

an
(n+1)!

( J
4T

)n.
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A.3.2 Specific heat

n an n an n an n an n an

0 0.0 5 −7 200.0 10 -11 558 004 480.0 15 −121 944 211 136 778 240.0 20 96 147 483 542 540 314 214 400.0

1 0.0 6 15 120.0 11 199 812 856 320.0 16 8 791 781 390 116 945 920.0 21 1 279 121 513 829 538 179 364 945 920.0

2 6.0 7 1 848 672.0 12 10 106 191 180 800.0 17 310 402 124 957 945 954 304.0 22 27 962 069 861 743 501 862 336 200 704.0

3 36.0 8 11 426 688.0 13 -19 376 365 252 608.0 18 −7 225 535 925 744 106 143 744.0 23 −2 398 518 627 113 966 015 427 501 883 392.0

4 −360.0 9 −594 846 720.0 14 -9 289 795 522 775 040.0 19 -643 407 197 363 813 620 776 960.0 24 −129 834 725 539 335 848 980 192 847 460 554.1120

Series coefficients for the linked cluster expansion of the magnetic specific heat for the Heisenberg chain with C =
P
n
an
n! ( J

4T )n.
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